Skip to content

Canadian Field Crop Genetics Improvement Cluster, Activity 5: Short season soybean improvement

Principal Investigator

Elroy Cober

Research Institution

Ottawa Research and Development Centre, Agriculture and Agri-Food Canada (AAFC)

External Funding Partners

This project is part of the $10.3 million Canadian Field Crop Genetics Improvement Cluster funded by the Canadian Field Crop Research Alliance (CFCRA) and Agriculture and Agri-Food Canada (AAFC) through the Industry-Led Research and Development Stream of the Growing Forward 2 AgriInnovation Program. Grain Farmers of Ontario is a founding member of the CFCRA.

Project Start

April 2013

Project End

March 2018


  • Develop soybeans with adaptation to 2300 to 2800 crop heat unit areas of Canada with high yield.
  • Develop lines with specialty traits including moderate to high protein, isoflavone levels to serve market requirements, high gamma-aminobutyric acid (GABA) and low cadmium accumulation.
  • Develop tests to measure tofu texture in silken and pressed tofu; protein solubility; and components isoflavones and GABA
  • Develop tests and identification of resistance for Pythium and Phytophthora root rots.


  • The improvement of food-type soybean for short season areas of Canada will allow for expansion of specialty soybean and greater market access.
  • The enhancement resistance of food-type soybean to Pythium root rot will allow producers to grow specialty soybean in eastern Canada.
  • The development of food-type soybean with specialty traits will enhance Canada’s competitiveness in the global market.

Scientific Summary

Soybean is an important crop in Canada and is grown from Alberta to the Maritime Provinces. The short season areas in Canada are the areas of expansion for soybean. While the main crushing market for varieties is well served by private industry, the public sector still has an important role in providing specialty varieties. Since approximately one-third of the crop is exported to value-added international markets, specialty varieties have an important role in the soybean industry. In specialty soybean development, seed composition and end-use functionality are emphasized through traits such as protein level and quality, sugar composition, reduced cadmium content, water absorbing traits, steamed bean texture, and tofu quality, including texture. End-use function traits are critical for premium soyfood markets in Asia which are served by the identity preserved system, since each variety is evaluated for product function. However, diseases still constitute a great constraint to soybean production with the most economically important diseases in eastern Canada being soybean cyst nematode (SCN), white mold, root rots caused by Phytophthora, Pythium, Fusarium, Rhizoctonia, and Phomopsisseed decay. Losses in yield to either disease can be >30% in an epidemical year.

This project will deliver varieties adapted to the short season areas of Canada. While specialty traits and stress tolerance or resistance are important traits, these traits must be combined in a soybean variety package which is agronomically competitive. As a result it is important to yield test across a range of locations in short season areas of Canada to identify high yielding varieties. Protocols will be developed which will allow for efficient screening of end-use or seed composition traits in breeding lines. Protocols will also be developed to screen for root rot tolerance or resistance.

Copy link
Powered by Social Snap